skip to main content


Search for: All records

Creators/Authors contains: "Costa, Gabriel C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Myrmecophagy is one of the most common dietary specializations among vertebrates. Ants are an important food resource for many lizard species. Here, we use a large dataset on ant consumption by lizards (345 species, 33 families) to explore evolutionary and ecological correlates of myrmecophagy across the evolutionary history of lizards. Based on literature and previous empirical work, we develop and test the following hypotheses about myrmecophagy: (i) it does not occur randomly across Squamata; it is correlated with (ii) foraging mode, (iii) habitat, (iv) body size, (v) aridity, and/or (vi) species range size. We found that ant ingestion is not distributed randomly in the phylogeny, with higher ingestion concentrated in some Iguania. Myrmecophagy also evolved in Lacertoidea and it is a derived trait with relatively recent origin. Foraging mode, habitat, body size, and aridity do not influence ant ingestion. Species with smaller range sizes show high variability in ant ingestion, whereas lizards with larger ranges tend to eat a lower proportion of ants. This result confirms the general ecological pattern that specialization is more common in narrowly distributed species. We suggest that future studies should also explore dietary specialization more broadly and provide a better taxonomic resolution of ant species in the diet of lizards.

     
    more » « less
  2. Rates of species formation vary widely across the tree of life and contribute to massive disparities in species richness among clades. This variation can emerge from differences in metapopulation-level processes that affect the rates at which lineages diverge, persist, and evolve reproductive barriers and ecological differentiation. For example, populations that evolve reproductive barriers quickly should form new species at faster rates than populations that acquire reproductive barriers more slowly. This expectation implicitly links microevolutionary processes (the evolution of populations) and macroevolutionary patterns (the profound disparity in speciation rate across taxa). Here, leveraging extensive field sampling from the Neotropical Cerrado biome in a biogeographically controlled natural experiment, we test the role of an important microevolutionary process—the propensity for population isolation—as a control on speciation rate in lizards and snakes. By quantifying population genomic structure across a set of codistributed taxa with extensive and phylogenetically independent variation in speciation rate, we show that broad-scale patterns of species formation are decoupled from demographic and genetic processes that promote the formation of population isolates. Population isolation is likely a critical stage of speciation for many taxa, but our results suggest that interspecific variability in the propensity for isolation has little influence on speciation rates. These results suggest that other stages of speciation—including the rate at which reproductive barriers evolve and the extent to which newly formed populations persist—are likely to play a larger role than population isolation in controlling speciation rate variation in squamates. 
    more » « less
  3. Ruane, Sara (Ed.)
    Abstract Genome-scale data have the potential to clarify phylogenetic relationships across the tree of life but have also revealed extensive gene tree conflict. This seeming paradox, whereby larger data sets both increase statistical confidence and uncover significant discordance, suggests that understanding sources of conflict is important for accurate reconstruction of evolutionary history. We explore this paradox in squamate reptiles, the vertebrate clade comprising lizards, snakes, and amphisbaenians. We collected an average of 5103 loci for 91 species of squamates that span higher-level diversity within the clade, which we augmented with publicly available sequences for an additional 17 taxa. Using a locus-by-locus approach, we evaluated support for alternative topologies at 17 contentious nodes in the phylogeny. We identified shared properties of conflicting loci, finding that rate and compositional heterogeneity drives discordance between gene trees and species tree and that conflicting loci rarely overlap across contentious nodes. Finally, by comparing our tests of nodal conflict to previous phylogenomic studies, we confidently resolve 9 of the 17 problematic nodes. We suggest this locus-by-locus and node-by-node approach can build consensus on which topological resolutions remain uncertain in phylogenomic studies of other contentious groups. [Anchored hybrid enrichment (AHE); gene tree conflict; molecular evolution; phylogenomic concordance; target capture; ultraconserved elements (UCE).] 
    more » « less